A sensorless approach to control of a turbodynamic left ventricular assist system

نویسندگان

  • Seongjin Choi
  • James F. Antaki
  • J. Robert Boston
  • Douglas Thomas
چکیده

A fuzzy logic controller for a rotary, turbodynamic left ventricular assist system was developed to optimize the delivery of blood flow without inducing suction in the ventricle. The controller is based on the pulsatility in blood flow through the pump and assumes that the natural heart is still able to produce some pumping action. To avoid the use of flow transducers, which are not reliable for long term use, the controller estimates flow using a model of the assist device. The controller was tested in computer simulation, a mock circulatory system, and in animal experiments. Simulation studies suggest that the fuzzy logic controller is more robust to parameter changes than a traditional proportional-integral (PI) controller. Experimental results in animals showed that the controller is able to provide satisfactory flows at adequate perfusion pressures while avoiding suction in the left ventricle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Left Ventricular Assist Device (LVAD) in Artificial Heart Using Particle Swarm Optimization

In this approach, the Left ventricular assist pump for patients with left ventricular failure isused. The failure of the left ventricle is the most common heart disease during these days. Inthis article, a State feedback controller method is used to optimize the efficiency of a samplingpump current. Particle Swarm Algorithm, which is a set of rules to update the position andvelocity, is applied...

متن کامل

Suction Detection in Left Ventricular Assist System: Data Fusion Approach

Data fusion approach is investigated to avoid suction in the left ventricular assist system (LVAS) using a nonpulsatile pump. LVAS requires careful control of pump speed to support the heart while preventing suction in the left ventricle and providing proper cardiac output at adequate perfusion pressure to the body. Since the implanted sensors are usually unreliable for long-term use, a sensorl...

متن کامل

Design an Equivalent Left Ventricular Assist Device for Medical Equipment Labs

LVAD is a mechanical pump supporting a weak heart function and blood flow. Sometimes, the heart may not recover fast enough to take over the pumping action immediately after surgery, in such patients a temporary support device has been employed to maintain the pumping action until the patient’s own heart recovers. This device can be considered as a temporary alternative before the process of ar...

متن کامل

A Sensorless Robust Tracking Control of an Implantable Rotary Blood Pump for Heart Failure Patients

Physiological control of a left ventricle assist device (LVAD) is generally a complicated task due to diverse operating environments and patient variability. In this work, a tracking control algorithm based on sliding mode and feed forward control for a class of discrete-time single input single output (SISO) nonlinear uncertain systems is presented. The controller was developed to track the re...

متن کامل

A Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer

This paper presents a new adaptive Sliding-Mode flux observer for speed sensorless and rotor flux control of three-phase induction motor (IM) drives. The motor drive is supplied by a three-level space vector modulation (SVM) inverter. Considering the three-phase IM Equations in a stator stationary two axis reference frame, using the partial feedback linearization control and Sliding-Mode (SM) c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Contr. Sys. Techn.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2001